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Abstract

A fractal analysis of permeabilities for unsaturated fractal porous media is presented based on the fractal

natures of pores in the media. Both the fractal phase permeabilities and the fractal relative permeabilities

are derived and found to be a function of fractal dimension for tortuosity, pore area fractal dimension,

fractal dimensions for wetting and non-wetting phases, saturation and microstructural parameters. The

proposed fractal models for permeabilities, both the phase permeabilities and the relative permeabilities, do
not contain any empirical constant. To verify the validity of the present analysis, the predicted relative

permeability data are compared with those of the existing measurements, and excellent agreement between

the model predictions and existing experimental data is found.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The permeabilities for porous media, both saturated and unsaturated, have received much
attention (De Wiest, 1969; Bear, 1972; Bowles, 1984; Jumikis, 1984; Kaviany, 1995; Panfilov,
2000) due to practical applications including chemical engineering, soil science and engineering,
oil production, polymer composite molding and heat pipes etc. Since the microstructures of real
porous media are usually disordered and extremely complicated, this makes it very difficult to
analytically find the permeability of the media especially for unsaturated (or multiphase) porous
media.
*
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Conventionally, the permeabilities of porous media were found by experiments (Levec and
Saez, 1986; Sasaki et al., 1987; Wang et al., 1994; Wu et al., 1994; Shih and Lee, 1998; Chen et al.,
2000). Besides, much effort was devoted to numerical simulations (Benzi et al., 1992; Martys and
Chen, 1996; Chen and Doolen, 1998; Adler and Thovert, 1998; Adler and Berkowitz, 2000;
Pandey et al., 2001; Ngo and Tamma, 2001). However, the results from either experiments or
numerical simulations are usually expressed as correlations with one or more empirical constants
or as curves, and the mechanisms behind the phenomena are thus often ignored. In order to get a
better understanding of the mechanisms for permeability, an analytical solution for permeability
of porous media becomes a challenging task.

Yu and Lee (2000) developed a simplified analytical model for evaluating the permeabilities of
porous fabrics used in liquid composite molding. This permeability model, which is related to
porosity and architectural structures of porous fabrics, is based on the one-dimensional Stokes
flow in macropores between fiber tows and on the one-dimensional Brinkman flow in micropores
inside fiber tows. Good agreement between theoretical predictions and experimental results was
found. However, this model may only apply to those media whose macropores can be simplified
as one-dimensional channels. So this and several other models may not be applicable to random/
disordered porous media. In addition, this model is only suitable to saturated porous media.

Katz and Thompson (1985) are the first to present the experimental evidence indicating that the
pore spaces of a set of sandstone samples are fractals and are self-similar over 3–4 orders of
magnitude in length extending from 10 �AA to 100 lm. They argued that the pore volume is a fractal
with the same fractal dimension as the pore–rock interface. This conclusion was supported by
correctly predicting the porosity from the fractal dimension, which was measured by a log–log
plot of number of pores versus the pore size. Krohn and Thompson (1986) also showed a set of
sandstone pores and found that they are fractals and follow the fractal power laws.

Adler (1985) numerically simulated the transport problem by applying a percolation model in a
fractal object, but no relation between the simulated results and fractal dimension was reported.
After 10 years, Adler (1996) concluded that the permeability in real porous media can be ex-
pressed as K ¼ Kð/;Df ; . . .Þ. However, no quantitative expression was given. Pitchumani and
Ramakrishnan (1999) proposed a fractal model for permeability of real porous fiber preforms.
This may be the first analytical model for permeability of fractal porous media and there is no
empirical constant in their model. Unfortunately, this model is found to be completely in error
(Yu, 2001).

Recently, Yu and Cheng (2002) developed a fractal permeability model for bi-dispersed (sat-
urated) porous media based on the fractal characteristics of pore sizes of the media, and this
fractal model is also applicable to porous anisotropic fabrics (Yu et al., 2002, 2003). Although this
model does not contain any empirical constant and good agreement is found between the model
predictions and experimental data, it is not applicable to unsaturated porous media. The saturated
porous medium is, in fact, only the special case of the unsaturated porous medium. It is, therefore,
more meaningful to develop an analytical solution for permeability of unsaturated (or multiphase)
porous media.

It should be noted that not all porous media are fractals, only those porous media whose pore
structures and pore size distributions are random and disordered may be fractals. In this paper,
we focus our attention on the derivation of a fractal analytical model for permeabilities of un-
saturated fractal porous media based on the fact that the porous media in nature are fractals
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(Katz and Thompson, 1985; Krohn and Thompson, 1986; Young and Crawford, 1991; Perfect
and Kay, 1991; Smidt and Monro, 1998; Yu and Li, 2001; Yu et al., 2001; Yu and Cheng, 2002;
Yu et al., 2002). In the next section we give the detailed description of the fractal characteristics of
microstructures of fractal porous media, which are the theoretical bases for the present fractal
analysis of permeabilities.
2. The description of microstructures of fractal porous media

Euclidean geometry describes ordered objects such as points, curves, surfaces and cubes using
integer dimensions 0, 1, 2 and 3, respectively. Their measures are invariant with respect to the
unit of measurement used. However, numerous objects found in nature (Mandelbrot, 1982) such
as rough surfaces, coastlines, mountains, rivers, lakes and islands, are disordered and irregular,
and they do not follow the Euclidean description due to the scale-dependent measures of length,
area and volume. These objects are called fractals, and the dimensions of such objects are non-
integral and called Hausdorff dimension, or simply fractal dimension. The geometry structures
such as Sierpinski gasket, Sierpinski carpet and Koch curve are the examples of the exactly self-
similar fractals or regular fractals, which exhibit the self-similarity over an infinite range of
length scales. Their dimensions are also called similarity dimensions (Feder, 1988). However,
exactly self-similar fractals in a global sense are rarely found in nature. Many objects found in
nature are not exactly self-similar, such as coastlines, islands on earth, they are statistically self-
similar and they are called the statistical fractals. These objects exhibit the self-similarity in some
average sense and over a certain local range of length scales, L. The fractal dimensions used in
this paper are applicable to both the exactly self-similar fractals (such as Sierpinski gasket,
Sierpinski carpet and Koch curve) and the statistical fractals (such as fractal/random porous
media).

Porous media such as soil, sandstones in oil reservoir, packed beds in chemical engineering,
fabrics used in liquid composite molding and wicks in heat pipes consist of numerous irregular
pores of different sizes spanning several orders of magnitude in length scales. The pore micro-
structures, both the pore sizes and the pore-interfaces, of such porous media exhibit the fractal
characteristics (Katz and Thompson, 1985; Krohn and Thompson, 1986; Young and Crawford,
1991; Perfect and Kay, 1991; Smidt and Monro, 1998; Yu and Li, 2001; Yu et al., 2001; Yu and
Cheng, 2002; Yu et al., 2002), and these media are called fractal porous media. The present work
only deals with these media. For simplicity, we here use the word ‘‘porous media’’ to represent the
word ‘‘fractal porous media’’.

In should be noted that in some cases, as pointed by Feder (1988), some fractal objects such as
Brownian motion exhibits the fractal character with different scaling ratios in different directions,
this character is called ‘‘self-affinity’’. However, our previous study (Yu et al., 2001) showed that
for porous fabrics, although their microstructures and permeabilities are anisotropic, their fractal
dimensions are approximately the same in different directions, this means that the ‘‘self-affinity’’
for porous media can be neglected, as many studies by Katz and Thompson (1985), Krohn and
Thompson (1986), Young and Crawford (1991), Perfect and Kay (1991), Smidt and Monro
(1998), Yu and Li (2001), Yu et al. (2001), Yu and Cheng (2002) and Yu et al. (2002). Therefore,
we neglect the ‘‘self-affinity’’ in this work.
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The pore in porous media plays a remarkable role in fluid flow and heat transfer in porous
media. The conventional method for description of characteristics of porous media is based on the
volume average (Kaviany, 1995) over the considered medium, and the significant influence of
microstructures on flow is thus ignored. Fortunately, the fractal natures of pores and pore fluids
may provide us with a better understanding of the mechanisms of flow and transport properties,
such as the permeability in porous media.

It is known that the cumulative size-distribution of islands on the earth�s surface follows the
power law NðA > aÞ � a�D=2 (Mandelbrot, 1982), where N is the total number of islands of area
(A) greater than a, and D is the fractal dimension of the surface. The equality in the above cu-
mulative size-distribution of islands on the earth�s surface can be invoked by using amax to be the
largest island to yield (Majumdar and Bhushan, 1990)
NðAP aÞ ¼ amax

a

� �Df=2

ð1Þ
Eq. (1) implies that there is only one largest island on the earth�s surface, this is consistent with the
physical situation. Marjumdar and Bhushan used this power law Eq. (1) to describe the contact
spots on engineering surfaces, where amax ¼ gk2max, a ¼ gk2, with k being the diameter of a spot
and g being a geometry factor. Compared with the islands on the earth�s surface or spots on
engineering surfaces, the pores in porous media are analogous to the islands on the earth�s surface
and to the spots on engineering surfaces. The cumulative size-distribution of pores whose sizes are
greater than or equal to k has also been proven to follow the fractal scaling law (Yu and Cheng,
2002; Yu et al., 2002).
NðLP kÞ ¼ kmax

k

� �Df

ð2Þ
where Df is the pore area fractal dimension, 1 < Df < 2 and kmax is the maximum pore size.
Differentiating Eq. (2) with respect to k results in the number of pores whose sizes are within the
infinitesimal range k to kþ dk,
�dN ¼ Dfk
Df

maxk
�ðDfþ1Þdk ð3Þ
The negative sign in Eq. (3) implies that the island or pore number decreases with the increase of
island or pore size, and �dN > 0. Eq. (2) describes the scaling relationship of the cumulative pore
population. The total number of pores or islands or spots, from the smallest diameter kmin to the
largest diameter kmax, can be obtained from Eq. (2) as (Yu and Li, 2001; Yu and Cheng, 2002; Yu
et al., 2002)
NtðLP kminÞ ¼
kmax

kmin

� �Df

ð4Þ
Dividing Eq. (2) by Eq. (4) gives
� dN
Nt

¼ Dfk
Df

mink
�ðDfþ1Þdk ¼ f ðkÞdk ð5Þ
where f ðkÞ ¼ Dfk
Df

mink
�ðDfþ1Þ P 0 is the probability density function. Patterned after probability

theory, the probability density function, f ðkÞ, should satisfy the following relationship:
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Z 1

0

f ðkÞdk ¼
Z kmax

kmin

f ðkÞdk ¼ 1� kmin

kmax

� �Df

� 1 ð6Þ
It is clear that Eq. (6) holds if and only if (Yu and Li, 2001)
kmin

kmax

� �Df

ffi 0 ð7Þ
is satisfied. Eq. (7) implies that kmin << kmax must be satisfied for fractal analysis of a porous
medium, otherwise the porous medium is a non-fractal medium. For example, if kmin ¼ kmax, both
Eqs. (6) and (7) do not hold. Eq. (7) can be considered as a criterion (Yu and Li, 2001) whether a
porous medium can be characterized by fractal theory and technique. This means that if Eq. (7)
does not hold, the porous medium is a non-fractal medium, and the fractal theory and technique
are not applicable to the medium. Fortunately, in general, kmin=kmax � 10�2 or <10�2 in porous
media, thus Eq. (7) holds for porous media. Thus, the fractal theory and technique can be used to
analyze the characters of porous media.

If we take the Sierpinski carpet or Sierpinski gasket as a porous medium model, it is easy to see
that the following relation holds:
Df ¼ 2� ln e

ln kmin

kmax

ð8aÞ
where Df ð1 < Df < 2Þ is the fractal dimension e is the porosity, kmin and kmax are the lower and
upper limits of self-similar regions. For Sierpinski carpet Df ¼ 1:8928 and for Sierpinski gasket
Df ¼ 1:5850. For example, in two dimensions for the 0-stage Sierpinski carpet, kmin=kmax ¼ 1=3
and e ¼ 8=9, the fractal dimension can be found to be Df ¼ 1:8928 from Eq. (8a); for the 1-stage
Sierpinski carpet, e ¼ ð8=9Þ2, kmin=kmax ¼ 1=9, and the fractal dimension can be also found to be
Df ¼ 1:8928 from Eq. (8a). This is expected. For any stage Sierpinski carpet and Sierpinski gasket,
Eq. (8a) holds. For the three-dimensional Sierpinski carpets and Sierpinski gaskets, Eq. (8a) can
be extended to yield
Df ¼ 3� ln e

ln kmin

kmax

ð8bÞ
where 2 < Df < 3. Combining Eqs. (8a) and (8b), a unified relation between the fractal dimension
and porosity can be obtained as (Yu and Li, 2001)
Df ¼ d � ln e

ln kmin

kmax

ð9Þ
where d is the Euclidean dimension, and d ¼ 2 and 3 in the two- and three-dimensional spaces,
respectively. Eq. (9) exactly holds for exact self-similar fractal geometries, such as Sierpinski
carpet and Sierpinski gasket (kmax and kmin are the upper and lower limits of self-similarity, re-
spectively). But Eq. (9) approximately holds for random or disordered fractal porous media (for
porous media, kmax and kmin are the maximum and minimum pore diameters, respectively, in a
unit cell or in a sample, this implies that the statistical self-similarity exists in the range of
kmin � kmax in porous media), and the detailed derivations are given elsewhere (Yu and Li, 2001).
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Eq. (9) shows that the pore area fractal dimension is a function of porosity and microstructures,
kmin and kmax.

Onoda and Toner (1986) presented a model for fractal dimension of fractal objects, this model
is expressed as:
D ¼ d þ ln p
ln S

ðCÞ
where p is the packing fraction of the previous generation of agglomerates in an agglomerate, i.e.
relative volume fraction of any generation of agglomerates, and is the same from generation to
generation. It is not the packing fraction of particles in the overall structure. S in Eq. (C) is a
factor by which each successive generation of agglomerates is always larger than the previous. It is
seen that the porosity / (corresponding to the packing fraction of particles in the overall struc-
ture) in Eq. (9) has the different meaning from p in Eq. (C). In addition, kmin and kmax in Eq. (9) are
the lower limit and upper limits of self-similar regions, which are also different from S in Eq. (C).
Both Eqs. (C) and (9) can be easily applied to calculate the fractal dimensions of exact fractal
geometries, such as Sierpinski carpet and Sierpinski gasket. However, when a statistically self-
similar fractal medium, such as a random fractal porous medium, is concerned, p and S in Eq. (C)
usually cannot be easily determined. While the porosity / or packing fraction of particles in the
overall structure can be easily found/measured, and kmin and kmax in a sample or a unit cell can be
also easily measured by instrument or by box-counting method. Then, Eq. (9) can be applied to
determine the fractal dimension of the structure.

Most recently, Yu and Li (in press) derived the analytical expressions for the phase fractal
dimensions of unsaturated porous media, the expressions are given as
Df;w ¼ d þ lnðSweÞ
ln kmax

kmin

ð10aÞ

Df;g ¼ d þ ln½ð1� SwÞe�
ln kmax

kmin

ð10bÞ
where S is the saturation, the subscripts w and g represent the wetting (e.g. water) and non-wetting
(e.g. gas) phases, respectively. Eq. (10a) indicates that when Sw ¼ 1, Eq. (10a) will be reduced to
Eq. (9), meaning that the medium becomes a single phase/saturated porous one. If Sw ¼ 0, Eq.
(10b) will be also reduced to Eq. (9) and the medium is also a single phase/saturated porous one. It
can be seen that Eq. (9) is only a special case of saturation Sw ¼ 1 in Eq. (10a) or Sw ¼ 0 in Eq.
(10b), and Eq. (10) is the general expression for fractal dimensions of porous media, both satu-
rated and unsaturated porous media.

A porous medium having various pore sizes can be considered as a bundle of tortuous capillary
tubes with variable cross sectional areas. Let the diameter of a capillary in the medium be k and its
tortuous length along the flow direction be LtðkÞ. Due to the tortuous nature of the capillary,
LtðkÞP L0, with L0 being the representative length. For a straight capillary, LtðkÞ ¼ L0. Wheatcraft
and Tyler (1988) developed a fractal scaling/tortuosity relationship for flow through heteroge-
neous media, and the scaling relationship is given by LtðdÞ ¼ d1�DTLDT

0 , where d is the length scale
of measurement. We argue that the diameters of capillaries are analogous to the length scales d,
which means that the smaller the diameter of a capillary, the longer the capillary. Therefore, the
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relationship between the diameter and length of capillaries also exhibits the similar fractal scaling
law:
LtðkÞ ¼ k1�DTLDT

0 ð11Þ

where DT is the fractal dimension for tortuosity, with 1 < DT < 2, representing the extent of
convolutedness of capillary pathways for fluid flow through a medium. Note that DT ¼ 1 rep-
resents a straight capillary path, and a higher value of DT corresponds to a highly tortuous
capillary. In the limiting case of DT ¼ 2, we have a highly tortuous line that fills a plane
(Wheatcraft and Tyler, 1988). Eq. (11) diverges as k ! 0, which is one of the properties of fractal
streamlines.

The fractal dimensions Df and DT, defined by Eqs. (2) and (11) respectively, are calledHausdorff

dimension (often called fractal dimension) according to the definition given by Mandelbrot (1982).
Since Eqs. (8)–(10) are also based on Eq. (2), the fractal dimensions, Df , Df;w and Df;g, in Eqs. (8)–
(10) are also called Hausdorff dimension (or simply fractal dimension). On the other hand, since
these fractal dimensions can be determined by the box-counting method, they are also named box-
counting dimension or box dimension (Feder, 1988).

Eqs. (2)–(4) and (7)–(11), which present a complete description of the fractal characters of
unsaturated porous media, form the basis of the present fractal analysis of permeabilities, which
will be derived in the following section.
3. Fractal permeabilities for unsaturated porous media

Consider a unit cell consisting of a bundle of tortuous capillary tubes with variable cross
sectional area, and each capillary tube is partially filled with the wetting and non-wetting phase
fluids. This is the typical state for unsaturated porous media. According to the literature by
Kaviany (1995), at very low saturations the wetting phase becomes disconnected (or immobile),
and at very high saturations the non-wetting phase becomes disconnected. So, in this work we
assume that the saturations are not very low and fluids in each capillary keep continuous. Since
pore size distributions in porous media have been proven to be fractals and their fractal characters
can be described by Eqs. (2)–(4) and (7)–(11), we assume that the wetting and non-wetting phases
in porous media are all fractals and they also follow Eqs. (2)–(4) and (7)–(11). We also have the
following assumptions similar to those given by Kaviany (1995) for the present analysis:

(1) The Darcy (Stokes) flow is applicable with a negligible interfacial drag in two-phase porous
media.

(2) The body force is neglected.
(3) The liquid flow is not coupled with gas flow.
(4) The viscosities of liquid phase and gas phase are independent of each other.

We also assume that the wetting phase and the non-wetting phase flows through tortuous paths
with approximately the same tortuosity as the single-phase flow, i.e. DT ¼ DT;w ¼ DT;g ¼ 1:10 (Yu
and Cheng, 2002) measured from the box-counting method. Wheatcraft and Tyler (1988) per-
formed the Monte Carlo simulations on an ensemble average fractal travel distance LtðdÞ versus
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scale of d for the fractal random walk model to simulate the dispersivity in heterogeneous media.
They obtained the tortuosity fractal dimension of DT ¼ 1:081, which is very close to the value of
DT ¼ 1:10 taken in this work.

The flow rate through a single tortuous capillary is given by modifying the well known Hagen–
Poiseulle equation (Denn, 1980) to give
qðkÞ ¼ G
DP
LtðkÞ

k4

l
ð12Þ
where G ¼ p=128 is the geometry factor for flow through a circular capillary, k is the hydraulic
diameter of a single capillary tube, l is the viscosity of the fluid, DP is the pressure gradient, and Lt

is the length of the tortuous capillary tube. Thus, the flow rate for each phase in a single tortuous
capillary can be written as
qwðkwÞ ¼ G
DPw
LtðkwÞ

k4w
lw

ð13aÞ

qgðkgÞ ¼ G
DPg
LtðkgÞ

k4g
lg

ð13bÞ
The total volumetric flow rates for each phase, Qw and Qg, through the unit cell are the sums of the
flow rates through all the individual capillaries, respectively. The total flow rate for each phase can
be obtained by integrating the individual flow rates, qwðkwÞ and qgðkgÞ, over the entire range of
pore channel sizes from the minimum pore channel kmin;w (and kmin;g) to the maximum pore
channel kmax;w (and kmax;g) in a unit cell. According to Eqs. (3), (11) and (13a), we have
Qw ¼ �
Z kmax;w

kmin;w

qðkwÞdNðkwÞ

¼ G
DPw
lw

A
L0

L1�DT

0

A
Df ;w

3þ DT � Df;w

k3þDT

max;w 1

"
� kmin;w

kmax;w

� �Df;w kmin;w

kmax;w

� �3þDT�2Df;w

#
ð14Þ
where Df;w is the area fractal dimension for the wetting phase given by Eq. (10a) and 1 < Df;w < 2
in two dimensions. Since 1 < DT < 2 and 1 < Df;w < 2, the exponent 3þ DT � 2Df;w > 0 and
0 < ðkmin;w

kmax;w
Þ3þDT�2Df;w < 1. Also, according to the Yu and Li�s criterion Eq. (7) (Yu and Li, 2001),

ðkmin

kmax
ÞDf ffi 0, we also have ðkmin;w

kmax;w
ÞDf ;w ffi 0 (because usually kmin

kmax
� 10�2, thus

kmin;w

kmax;w
� 10�2). It follows

that Eq. (14) can be reduced to
Qw ¼ G
DPw
lw

A
L0

L1�DT

0

A
Df ;w

3þ DT � Df;w

k3þDT

max;w ð15Þ
Using Darcy�s law, we obtain the permeability expression for the wetting phase in an unsat-
urated porous medium as follows:
Kw ¼ lwL0Qw

DPwA
¼ G

L1�DT

0

A
Df;w

3þ DT � Df ;w

k3þDT

max;w ð16Þ
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which indicates that the wetting phase permeability is a function of the fractal dimensions Df;w, DT

and structural parameters, A, L0 and kmax;w.
It can be found that although both the integration of Eq. (14) and the phase permeability model

Eq. (16) are very simple, the mechanisms affecting the flow rate and permeability are quantita-
tively related. However, the conventional numerical methods such as lattice gas (Pandey et al.,
2001), lattice Boltzmann method (Chen and Doolen, 1998) and Effective Medium analysis (Adler
and Berkowitz, 2000) need artificially construct a porous medium or random lattice/medium, then
Monte Carlo simulations or iterations are performed to solve more sophisticated equations/
models (usually, a set of equations, e.g. N-S equations) for effective conductivity (such as per-
meability). While the present model is based on a real fractal porous medium, not based on an
artificial porous medium, to solve a simple model given by Eqs. (14) and (16) for permeability.
The second significantly different feature between the conventional numerical methods such as
Effective Medium analysis (Adler and Berkowitz, 2000) and the present fractal analysis is that the
Effective Medium analysis assumes the lattice bond conductivities distributed lognormally while
the present fractal analysis is based on the pore size distribution following the fractal power laws
(Katz and Thompson, 1985; Krohn and Thompson, 1986; Young and Crawford, 1991; Perfect
and Kay, 1991; Smidt and Monro, 1998; Yu and Li, 2001; Yu et al., 2001; Yu et al., 2002; Yu and
Cheng, 2002). The third significant difference between the conventional numerical methods such
as Effective Medium analysis (Adler and Berkowitz, 2000), lattice gas (Pandey et al., 2001) and the
present fractal analysis is that a comparison with experimental permeability data was not given in
their methods, while our present fractal analysis presents such a comparison (see Section 4).
Therefore, the validity of their analysis and lognormal distribution assumption for bond con-
ductivities should be further verified by a comparison with experimental data.

Similarly, the permeability expression for the non-wetting phase in an unsaturated porous
medium can be obtained as
Kg ¼
lgL0Qg

DPgA
¼ G

L1�DT

0

A
Df;g

3þ DT � Df ;g

k3þDT

max;g ð17Þ
where Df;g is the area fractal dimension for the non-wetting phase given by Eq. (10b) and
1 < Df ;g < 2 in two dimensions.

For straight capillaries, DT ¼ 1, Eqs. (16) and (17) can be reduced to
Kw ¼ G
1

A
Df;w

4� Df;w

k4max;w ð18Þ
and
Kg ¼ G
1

A
Df;g

4� Df;g

k4max;g ð19Þ
respectively. Eqs. (15)–(19) present the phase flow rate (Qw) and phase permeabilities (Kw and Kg)
in an unsaturated porous medium. Eqs. (15)–(19) indicate that the phase flow rate and phase
permeabilities are very sensitive to the maximum phase channel sizes kmax;w and kmax;g. It is also
shown that the higher the fractal dimensions Df;w and Df;g, the larger the flow rate and the phase
permeability values. From Eqs. (15)–(19), it can be seen that the flow rate and the phase
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permeabilities will reach the maximum possible values as the fractal dimensions Df;w and Df;g

approach their maximum possible value of 2. This is in consistence with fractal theory.
For saturated porous media, each capillary is filled with a single fluid and thus we have Sw ¼ 1

in Eq. (10a) or Sw ¼ 0 in Eq. (10b), Eq. (10) will be reduced to Eq. (9) and kmax;w ¼ kmax;g ¼ kmax,
kmin;w ¼ kmin;g ¼ kmin. Then we have the permeabilities for saturated porous media
K ¼ G
L1�DT

0

A
Df

3þ DT � Df

k3þDT

max ð20Þ
For straight capillaries, DT ¼ 1, Eq. (20) can be reduced to
K ¼ G
1

A
Df

4� Df

k4max ð21Þ
Eqs. (20) and (21) describe the permeabilities for saturated porous media. It is seen that Eqs. (16)–
(19) are the general expressions for permeabilities of unsaturated porous media, and Eqs. (20) and
(21) are the special cases of unsaturated porous media. Eqs. (20) and (21) are also called the
absolute permeabilities.

The permeations of both wetting and non-wetting fluids play important roles in unsaturated (or
multiphase) porous media. Muskat and Meres (1936) recommended that the phase permeabilities
Kw and Kg be treated as isotropic and given by
Kw ¼ Kkrw ð22Þ

Kg ¼ Kkrg ð23Þ
or
krw ¼ Kw=K ð24Þ

krg ¼ Kg=K ð25Þ
where krw and krg are the relative permeabilities of the wetting and non-wetting phases, respec-
tively.

The permeations for unsaturated porous media are usually expressed as the relative perme-
abilities. Combining Eqs. (16), (17), (20), (24) and (25) yields
krw ¼ Kw

K
¼ 3þ DT � Df

3þ DT � Df ;w

Df;w

Df

kmax;w

kmax

� �3þDT

ð26Þ

krg ¼
Kg

K
¼ 3þ DT � Df

3þ DT � Df ;g

Df ;g

Df

kmax;g

kmax

� �3þDT

ð27Þ
It is evident that the relative permeability is a function of fractal dimensions Df , DT and Df;w (or
Df ;g), and microstructural parameters, kmax, kmax;w (or kmax;g). There is no any empirical constant in
this fractal relative permeability model. The fractal dimensions Df , Df;w, Df;g and DT are given by
Eqs. (9)–(11). Once the ratios of kmax;w=kmax and kmax;g=kmax are found, the relative permeabilities
can be determined. In the following, we will give the detailed derivation for the ratios of
kmax;w=kmax and kmax;g=kmax.
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Fig. 1 shows a schematic of the cross section of a capillary tube partially filled with water and
gas. From Fig. 1, we can obtain the pore volume Vp and the volume, Vw, occupied by water or
wetting phase as
Vp ¼ pk2=4 ð28Þ
and
Vw ¼ Vp � Vg ¼ pk2=4� pk2g=4 ð29Þ
respectively, where k and kg are the diameter of a capillary pathway and the diameter of non-
wetting (e.g. gas) phase pathway, and Vg is the volume occupied by non-wetting fluid. According
to the definition (Bear, 1972) for saturation Sw, we have
Sw ¼ Vw
Vp

¼ 1� kg
k

� �2

ð30Þ
and
Sg ¼
Vg
Vp

¼ kg
k

� �2

ð31Þ
Obviously, Eqs. (30) and (31) satisfies Sw þ Sg ¼ 1 and this is expected. From Eqs. (30) and (31)
the diameter for non-wetting fluid (such as gas) can be expressed as
kg ¼ k
ffiffiffiffiffi
Sg

p
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Sw

p
ð32Þ
Eq. (32) denotes that kg ¼ 0 as Sw ¼ 1 and kg ¼ k as Sw ¼ 0, and vice versa. This is expected and is
consistent with physical situation.

The volume, Vw, occupied by the wetting fluid (such as water) can be written as
Vw ¼ pk2=4� pk2g=4 ¼ pk2w=4 ð33Þ
where kw is the effective diameter of wetting fluid occupying the cross section of a capillary
pathway. Again, according to the definition of saturation
Sw ¼ Vw=Vp ¼ k2w=k
2 ð34Þ
Fig. 1. A schematic of the cross section of a capillary tube partially filled with water and gas.
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This results in
kw ¼ k
ffiffiffiffiffi
Sw

p
ð35Þ
Eq. (35) indicates that kw ¼ 0 as Sw ¼ 0 and kw ¼ k as Sw ¼ 1, and vice versa. This is again ex-
pected and is consistent with physical situation. Usually, 0 < Sw < 1 such as the saturation in soil,
in which pores are partially filled with fluid such as water, i.e. the two phases (e.g. water and gas)
coexist in soil. From Eqs. (32) and (35), we can directly write the effective maximum and the
smallest diameters for wetting and non-wetting fluids in maximum and smallest pores (or capillary
tubes) as
kmax;w ¼ kmax

ffiffiffiffiffi
Sw

p
or kmax;w=kmax ¼

ffiffiffiffiffi
Sw

p
ð36aÞ

kmin;w ¼ kmin

ffiffiffiffiffi
Sw

p
or kmin;w=kmin ¼

ffiffiffiffiffi
Sw

p
ð36bÞ

kmax;g ¼ kmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Sw

p
or kmax;g=kmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Sw

p
ð36cÞ

kmin;g ¼ kmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Sw

p
or kmin;g=kmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Sw

p
ð36dÞ
It is seen that if we insert Eqs. (36a)–(36d) into Eq. (9), and apply the relations:
Sw ¼ Vw=Vp ¼ ðVw=VtÞ=ðVp=VtÞ ¼ ew=e or ew ¼ Swe, and eg ¼ Sge ¼ ð1� SwÞe, we can also obtain
Eq. (10), i.e.
Df;w ¼ d � ln ew

ln
kmin;w

kmax;w

¼ d � lnðSweÞ
ln kmin

ffiffiffiffi
Sw

p

kmax

ffiffiffiffi
Sw

p
¼ d þ lnðSweÞ

ln kmax

kmin

ð10aÞ
This is exactly Eq. (10a). Similarly, we can obtain Eq. (10b).
We can now turn our attention again on the relative permeabilities for wetting and non-wetting

phases. Inserting Eqs. (36a) and (36c) into Eqs. (26) and (27), respectively, we arrive at
krw ¼ Kw

K
¼ 3þ DT � Df

3þ DT � Df ;w

Df;w

Df

Sð3þDTÞ=2
w ð37Þ

krg ¼
Kg

K
¼ 3þ DT � Df

3þ DT � Df ;g

Df ;g

Df

ð1� SwÞð3þDTÞ=2 ð38Þ
It is evident that the relative permeability krw (or krg) is a function of saturation Sw and fractal
dimensions Df , DT and Df;w (or Df;g), and there is no any empirical constant in this fractal relative
permeability model.
4. Results and discussion

4.1. Phase fractal dimensions

The fractal theory requires that the values of fractal dimensions Df ;w and Df;g be in the range of
1 and 2 in two dimensions based on the definition given by Eq. (2). To be valid, we first check/
calculate the fractal dimensions Df;w and Df;g. For this purpose, we take bi-dispersed porous media
(Yu and Cheng, 2002) as samples for study because they have been proven to be fractal media.



Fig. 2. An image photo (Yu and Cheng, 2002) of a bi-dispersed medium at porosity 0.54, where the black and the white

regions are pores and clusters formed by agglomeration of copper particles. Since the micropores inside clusters are very

small and the copper particles are soft, it is difficult to see the micropores inside clusters after the sample being polished.
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The bi-dispersed porous structure, as shown in Fig. 2, is composed of clusters (at macrolevel),
which are agglomerated by small particles (at microlevel). Since the clusters and particles within
the clusters are randomly distributed, this leads to macropores and micropores of various sizes in
a bi-dispersed porous medium, so this medium is much similar to packed beds. For saturated (or
single-phase) bi-dispersed porous media, the pore area fractal dimension Df can be described by
Eq. (9). In Eq. (9), we roughly take kmax=kmin ¼ 24, which is the same as the ratio (Yu and Cheng,
2002) of the average cluster size to the minimum particle size. Fig. 3 illustrates the results of pore
area fractal dimension Df versus porosity by Eq. (9) and by the box-counting method (Yu and
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Fig. 3. A comparison between the theoretical predictions by Eq. (9) and the results from the box-counting method (Yu

and Cheng, 2002).



1638 B. Yu et al. / International Journal of Multiphase Flow 29 (2003) 1625–1642
Cheng, 2002). Fig. 3 shows the good agreement between the model prediction from Eq. (9) and
those from the box-counting method for the saturated bi-dispersed porous media.

The fractal dimensions, Df;w and Df;g, can be determined by Eq. (10). Fig. 4 gives the fractal
dimensions, Df;w and Df;g, versus the saturation Sw at different porosities and by roughly taking
kmax=kmin ¼ 24 again. It is seen from Fig. 4 that the fractal dimension Df ;w increases monotonously
with saturation. As saturation tends to 1 the fractal dimension Df;w reaches its maximum value of
1.80 at porosity 0.54, approximately the same value as the value 1.81 from the box-counting
method for bi-dispersed medium at porosity 0.54 (Yu and Cheng, 2002). The similar phenomenon
can be observed for non-wetting phase. The non-wetting phase fractal dimension Df;g reaches its
maximum possible value 1.80 as saturation is zero at porosity 0.54. This means that as saturation
tends to zero, the medium is fully filled with a non-wetting fluid (or single-phase fluid), so it is
expected that fractal dimension is exactly the same as that for saturated porous medium. Fig. 4
also shows that the phase fractal dimension depends on porosity. The higher the porosity, the
higher the fractal dimension. This can be interpreted that the higher porosity implies larger pore
area, the larger pore area leads to the larger phase area/volume and the higher fractal dimension.
In the limiting case, as porosity tends to 1, a unit cell of the medium becomes a smooth plane,
whose fractal dimension is 2. Therefore, the present results are reasonable. From Fig. 4 an im-
portant phenomenon can be also found. That is when saturation Sw < 0:1, the fractal dimension
Df ;w < 1. This reveals that when saturation Sw < 0:1, the wetting phase distribution in porous
media is non-fractal (in two dimensions) according to fractal theory. Similarly, when saturation
Sw > 0:9, Df;g < 1. This indicates that the non-wetting phase distribution is also non-fractal (in
two dimensions) when Sw > 0:9. This suggests that only when Sw > 0:1 and Sw < 0:9, the wetting
and non-wetting phases are fractal objects, respectively. On the other hand, according to the
literature by Kaviany (1995), at very low saturations the wetting phase becomes disconnected (or
immobile), and at very high saturations the non-wetting phase becomes disconnected. This implies
that at low saturations for wetting phase and at high saturations for non-wetting phase, the pore
fluid is embedded in one dimension and the fractal dimension is less than one, and the fluid is
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Fig. 4. The phase fractal dimensions versus saturation.
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disconnected. Usually, the experimentally relative permeability data (De Wiest, 1969; Bear, 1972;
Kaviany, 1995) were reported also in the range of about Sw > 0:1 for wetting phase. It is seen that
the present fractal permeability results are consistent with the experimental observations, and the
present analysis is thus restricted in the ranges of Sw > 0:1 for wetting phase and Sw < 0:9 for non-
wetting phase for requirements from both fractal theory and experimental observations.

4.2. Fractal relative permeabilities

According to the above analysis, the present fractal relative permeabilities are given in the
ranges of Sw > 0:1 for wetting phase and Sw < 0:9 for non-wetting phase.

The algorithm for determination of the relative permeabilities for unsaturated porous media is
summarized as follows:

1. Select a porosity, e.
2. Find Df from Eq. (9).
3. Select a saturation, Sw, find Df;w and Df ;g from Eqs. (10a) and (10b), respectively.
4. Find the relative permeabilities from Eqs. (37) and (38) (DT ¼ 1:10 is used in this work).

The above procedures 3 and 4 are repeated to find the relative permeabilities for a given po-
rosity.

We have found that the above computation of relative permeabilities takes less than one second
in a microcomputer, and no grid generation and no boundary conditions are needed. While
applying any numerical method such as finite difference method, finite element method, lattice
Boltzmann method and Monte Carlo simulation, grid generation and/or boundary conditions are
needed, and thus much more computer time is often required. Therefore, the advantage of the
present fractal analysis of permeabilities for porous media over numerical methods is evident.

Fig. 5 presents the relative permeabilities, krw and krg, versus saturation calculated from Eqs.
(37) and (38), respectively. Fig. 5 shows that although the phase fractal dimensions depend on
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Fig. 5. The relative permeabilities predicted by the present fractal model.
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porosity (see Fig. 4), the relative permeabilities predicted from Eqs. (37) and (38) are independent
of porosity and are a function of saturation only. So, in this work, we approximately consider the
bi-dispersed porous media as mono-dispersed porous media (similar to packed beds) in calcu-
lating the relative permeabilities. The present fractal relative permeability results are consistent
with many empirical formulas, which are often expressed as a function of saturation with one or
more empirical constants from experiments (Kaviany, 1995). However, there is no any empirical
constant in the present fractal permeability models Eqs. (37) and (38), and this is an another
advantage of the present fractal analysis over those empirical correlations from experiments and
numerical simulations. From Fig. 5 it can be also found that krw þ krg < 1, this is in consistence
with general observations and the shapes of the relative permeability curves are also in consistence
with the literature reports (De Wiest, 1969; Bear, 1972; Kaviany, 1995).

It should be noted that although the particles in a packed bed may be uniform in size, the
capillaries in a packed bed are usually non-uniform and they may follow the fractal distribution.
Fig. 6 compares the predictions from the present fractal permeability model for mono-dispersed
porous media (similar to packed beds) and the experimental data (Kaviany, 1995; Levec and Saez,
1986) for packed beds, and excellent agreement between the predictions from the present fractal
permeability model and the experimental data is obtained. This verifies the validity of the present
fractal analysis of permeabilities for unsaturated porous media.
5. Concluding remarks

In this paper, a theoretical analysis of permeabilities for unsaturated porous media is presented
based on the fractal characters of pore size/phase distributions in unsaturated porous media. The
general phase fractal permeability models, given by Eqs. (16) and (17), are in terms of the fractal
dimension DT for tortuosity, pore area fractal dimension Df , fractal dimensions Df;w for wetting
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phase and Df;g for non-wetting phase, saturation Sw, and the structural parameters A, kmax, L0. The
fractal relative permeability models given by Eqs. (37) and (38) are expressed as a function of the
fractal dimensions DT, Df , Df ;w and Df;g, and saturation Sw. There is no any empirical constant in
the present relative permeability models. The results from the present relative permeability models
are found to be independent of porosity. The fractal permeability model Eq. (20) can be con-
sidered as a special case of the unsaturated porous medium by setting Sw ¼ 1 in Eqs. (10a) and
(36a) or by setting Sw ¼ 0 in Eqs. (10b) and (36c). The predictions of the relative permeabilities of
porous media based on the proposed fractal model are found to be in excellent agreement with
existing experimental data. This verifies the validity of the present fractal analysis of permeability
for porous media.
Acknowledgement

This work was supported by the National Natural Science Foundation of China through Grant
Numbers 10272052.
References

Adler, P.M., 1985. Transport processes in fractals––I. Conductivity and permeability of a Leibniz packing in the

lubrication limit. Int. J. Multiphase Flow 11, 91–108.

Adler, P.M., 1996. Transports in fractal porous media. J. Hydrol. 187, 195–213.

Adler, P.M., Berkowitz, B., 2000. Effective medium analysis of random lattices. Transport Porous Media 40, 145–151.

Adler, P.M., Thovert, J.-F., 1998. Real porous media: local geometry and macroscopic properties. Appl. Mech. Rev.

51, 537–585.

Bear, J., 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc.

Benzi, R., Succi, S., Vergassola, M., 1992. The lattice Boltzmann equation: theory and applications. Phys. Rep. 222,

145–197.

Bowles, J., 1984. Physical and Geotechnical Properties of Soil, second ed. McGraw-Hill Book Company, New York.

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364.

Chen, Z.Q., Cheng, P., Zhao, T.S., 2000. An experimental study of two phase flow and boiling heat transfer in bi-

dispersed porous channels. Int. Commun. Heat Mass Transfer 27, 293–302.

De Wiest, R.J.M., 1969. Flow through Porous Media. Academic Press, New York and London.

Denn, M.M., 1980. Process Fluid Mechanics. Prentice Hall, NJ. pp. 35.

Feder, J., 1988. Fractals. Plenum Press, New York. pp. 7–30,184–192.

Jumikis, A.R., 1984. Soil Mechanics. Robert E. Krieger Publishing Company, Inc., Malabar, Florida.

Katz, A.J., Thompson, A.H., 1985. Fractal sandstone pores: Implications for conductivity and pore formation. Phys.

Rev. Lett. 54, 1325–1328.

Kaviany, M., 1995. Principles of Heat Transfer in Porous Media, second ed. Springer-Verlag, New York.

Krohn, C.E., Thompson, A.H., 1986. Fractal sandstone pores: Automated measurements using scanning-electron-

microscope images. Phys. Rev. B 33, 6366–6374.

Levec, J., Saez, A.E., 1986. The hydrodynamics of Tricking flow in packed beds. Part II: Experimental observations.

AIChE J. 32, 369–380.

Majumdar, A.A., Bhushan, B., 1990. Role of fractal geometry in roughness characterization and contact mechanics of

surfaces. J. Tribol. 112, 205–216.

Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. Freeman, San Francisco. pp. 15, 23–57,117–119.

Martys, N.S., Chen, H., 1996. Simulation of multicomponent fluids in complex three-dimensional geometries by the

lattice Boltzmann method. Phys. Rev. E 53, 743–750.



1642 B. Yu et al. / International Journal of Multiphase Flow 29 (2003) 1625–1642
Muskat, M., Meres, A.W., 1936. The flow of heterogeneous fluid through porous media. Physics 7, 346–363.

Ngo, N.D., Tamma, K.K., 2001. Microscale permeability predictions of porous fibrous media. Int. J. Heat Mass

Transfer 44, 3135–3145.

Onoda, G.Y., Toner, J., 1986. Fractals dimensions of model particle packings having multiple generations of

agglomerations. J. Am. Ceram. Soc. 69, C278–C279.

Pandey, R.B., Becklehimer, J.L., Gettrust, J.F., 2001. Density profile and flow of driven gas in an open porous medium

with a computer simulation. Physica A 289, 321–335.

Panfilov, M., 2000. Macroscale Models of Flow through Highly Heterogeneous Porous Media. Kluwer Academic Pub,

London.

Perfect, E., Kay, B.D., 1991. Fractal theory applied to soil aggregation. Soil Sci. Soc. Am. J. 55, 1552–1558.

Pitchumani, R., Ramakrishnan, B., 1999. A fractal geometry model for evaluating permeabilities of porous preforms

used in liquid composite molding. Int. J. Heat Mass Transfer 42, 2219–2232.

Sasaki, A., Aiba, S., Fukuda, H., 1987. A study on the thermophysical properties of a soil. ASME, J. Heat Transfer

109, 232–237.

Shih, C.-H., Lee, L.J., 1998. Effect of fiber architecture on permeability in liquid composite molding. Polym. Compos.

19, 626–639.

Smidt, J.M., Monro, D.M., 1998. Fractal modeling applied to reservoir characterization and flow simulation. Fractals

6, 401–408.

Wang, T.J., Wu, C.H., Lee, L.J., 1994. In-plane permeability measurement and analysis in liquid composite molding.

Polym. Compos. 15, 278–288.

Wheatcraft, S.W., Tyler, S.W., 1988. An explanation of scale-dependent dispersivity in heterogeneous aquifers using

concepts of fractal geometry. Water Resour. Res. 24, 566–578.

Wu, C.-H., Wang, T.J., Lee, L.J., 1994. Trans-plane fluid permeability measurement and its application in liquid

composite molding. Polym. Compos. 15, 289–298.

Young, I.M., Crawford, J.W., 1991. The fractal structure of soil aggregations: its measurement and interpretation.

J. Soil Sci. 42, 187–192.

Yu, B.M., 2001. Comments on ‘‘A fractal geometry model for evaluating permeabilities of porous preforms used in

liquid composite molding’’. Int. J. Heat Mass Transfer 44, 2787–2789.

Yu, B.M., Cheng, P., 2002. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transfer 45,

2983–2993.

Yu, B.M., Lee, L.J., 2000. A simplified in-plane permeability model for textile fabrics. Polym. Compos. 21, 660–685.

Yu, B.M., Li, J.H., 2001. Some fractal characters of porous media. Fractals 9, 365–372.

Yu, B.M., Lee, L.J., Cao, H.Q., 2001. Fractal characters of pore microstructures of textile fabrics. Fractals 9, 155–163.

Yu, B.M., Lee, L.J., Cao, H.Q., 2002. A fractal in-plane permeability model for fabrics. Polym. Compos. 23, 201–221.

Yu, B.M., Li, J.H., Zhang, D.M., 2003. A fractal trans-plane permeability model for textile fabrics. Int. Commun. Heat

Mass Transfer 30, 127–138.

Yu, B.M., Li, J.H. Fractal dimensions for unsaturated porous media. Fractals, in press.


	Permeabilities of unsaturated fractal porous media
	Introduction
	The description of microstructures of fractal porous media
	Fractal permeabilities for unsaturated porous media
	Results and discussion
	Phase fractal dimensions
	Fractal relative permeabilities

	Concluding remarks
	Acknowledgements
	References


